## SSC CHSL - CHT1 : 180228 GRAND TEST

## HINTS AND SOLUTIONS

| 1  | (3) | 26 | (4) | 51 | (1) | 76  | (1) |
|----|-----|----|-----|----|-----|-----|-----|
| 2  | (3) | 27 | (2) | 52 | (2) | 77  | (3) |
| 3  | (3) | 28 | (1) | 53 | (4) | 78  | (4) |
| 4  | (1) | 29 | (1) | 54 | (3) | 79  | (4) |
| 5  | (4) | 30 | (2) | 55 | (4) | 80  | (4) |
| 6  | (3) | 31 | (1) | 56 | (3) | 81  | (2) |
| 7  | (2) | 32 | (4) | 57 | (3) | 82  | (1) |
| 8  | (3) | 33 | (2) | 58 | (4) | 83  | (4) |
| 9  | (2) | 34 | (1) | 59 | (1) | 84  | (1) |
| 10 | (3) | 35 | (1) | 60 | (2) | 85  | (2) |
| 11 | (3) | 36 | (2) | 61 | (2) | 86  | (1) |
| 12 | (2) | 37 | (2) | 62 | (1) | 87  | (2) |
| 13 | (3) | 38 | (1) | 63 | (3) | 88  | (1) |
| 14 | (2) | 39 | (4) | 64 | (2) | 89  | (4) |
| 15 | (3) | 40 | (3) | 65 | (3) | 90  | (4) |
| 16 | (3) | 41 | (3) | 66 | (4) | 91  | (2) |
| 17 | (3) | 42 | (2) | 67 | (3) | 92  | (3) |
| 18 | (2) | 43 | (2) | 68 | (1) | 93  | (1) |
| 19 | (1) | 44 | (1) | 69 | (3) | 94  | (2) |
| 20 | (2) | 45 | (2) | 70 | (3) | 95  | (3) |
| 21 | (2) | 46 | (3) | 71 | (3) | 96  | (3) |
| 22 | (3) | 47 | (2) | 72 | (3) | 97  | (4) |
| 23 | (2) | 48 | (2) | 73 | (3) | 98  | (1) |
| 24 | (3) | 49 | (4) | 74 | (4) | 99  | (1) |
| 25 | (4) | 50 | (4) | 75 | (4) | 100 | (3) |

1. (3) Stethoscope is an instrument used by doctor, Similarly, chisel is used by sculptor.

2. (3)  $7 \times 19 = 133$ 

Similarly,  $9 \times 19 = 171$ . 3. (3) A cub is a young bear, and a joey is a young kangaroo.

- ? = 5873 3333 = 2540
- 5. (1) Except 379, the sum of the digits in rest of the options is 13.



- (2) Read 'Stream' as 'Stem'.Except (B), In others second is a part of first whereas chair and sofa are different types.
- 8. (3) In the word MEET, the second and the third letters are the same.
- 9. (2)

16.

1

7.

- 10. (3)  $A = 1 \Rightarrow 1^{3} + 1^{2} + 1 = 3$   $B = 2 \Rightarrow 2^{3} + 2^{2} + 2 = 14$   $C = 3 \Rightarrow 3^{3} + 3^{2} + 3 = 39$   $D = 4 \Rightarrow 4^{3} + 4^{2} + 4 = 84$  $\therefore G = 7 \Rightarrow 7^{3} + 7^{2} + 7 = 399$
- (3) Grandson of Arun's mother means either son or nephew of Arun. Therefore, Arun is the father-in-law of that girl.

12. (2) 
$$W \xrightarrow{+5} B \xrightarrow{+9} K \xrightarrow{+6} Q \xrightarrow{+7} X \xrightarrow{+1} Y \xrightarrow{+7} F$$
  
 $W \xrightarrow{+2} Y \xrightarrow{+3} B \xrightarrow{+4} F \xrightarrow{+5} K \xrightarrow{+6} Q \xrightarrow{+7} X$   
 $Y \xrightarrow{+3} B \xrightarrow{+15} Q \xrightarrow{+0} Q \xrightarrow{-11} F \xrightarrow{+2} H \xrightarrow{+6} N$   
 $W \xrightarrow{+3} Z \xrightarrow{+3} C \xrightarrow{+5} H \xrightarrow{+2} J \xrightarrow{+3} M \xrightarrow{+4} Q$   
13. (3)  $5 \times 2 + 1 = 11$   
 $11 \times 2 - 1 = 21$   
 $21 \times 2 + 1 = 43$   
 $43 \times 2 - 1 = 85$   
 $85 \times 2 + 1 = 171$   
14. (2)  $A \xrightarrow{+1} B \xrightarrow{+1} C \xrightarrow{+1} P \xrightarrow{+1} Q \xrightarrow{+1} R$   
 $N \xrightarrow{+1} O \xrightarrow{+1} P \xrightarrow{+1} Q \xrightarrow{+1} R$   
15. (3)  $7 \times 6 + 6 \times 4 + 4 \times 7 = 42 + 24 + 28 = 94$   
 $5 \times 3 + 3 \times 2 + 5 \times 2 = 15 + 6 + 10 = 31$   
 $8 \times 5 + 5 \times 3 + 3 \times 8 = 40 + 15 + 24 = 79$ 

(3) 
$$4 \times 8 + 3 = 32 + 3 = 35$$
  
 $7 \times 6 + 7 = 42 \implies 42 + 7 = 49$   
 $9 \times 8 + 9 = 72 + 9 = 81$ 



Required distance = XB = 90 - 70 = 20 metre

 (2) Number of days from March 6, 1993 to August 15, 1993.

March — April — May — June — July — August

= 25 + 30 + 31 + 30 + 31 + 15

= 162 days = 23 weeks + 1 day

Clearly, the day on March 6, will be the same as on August 14 i.e., Thursday.



19. (1) First Premise is Particular Affirmative (I-type). Second Premise is Universal Negative (E-type).

Some cats are dogs.

I + E ⇒ O - type of Conclusion.
"Some cats are not toys." This is Conclusion III. Conclusion I is Converse of the first Premise.
20. (2) L.C.M. of 6, 5, 7, 10 and 12 is 420. So, the bells will ring together after every 420 seconds i.e. 7 minutes. Now, 7 × 8 = 56 and 7 × 9 = 63.

Thus, in 1 hour (or 60 minutes), the bells will toll together 8 times, excluding the one at the start.

$$\begin{array}{ccc} 22 & (3) \\ 23 & (2) \\ 24 & (3) \end{array}$$

51 (1)

52. (2) Let speed of boat = x, speed of current = y Downstream speed = (x + y), upstream speed = (x - y) Condition (i):

$$\frac{21}{x+y} + \frac{21}{x-y} = 10 \qquad \dots (1)$$

Condition (ii):

$$\frac{7}{x+y} = \frac{3}{x-y} \implies \frac{x+y}{x-y} = \frac{7}{3}, \text{ assume } x+y = 7k$$

$$(x-y) = 3k, \text{ put values in equ. (1)}$$
then,  $k = 1, x+y = 7, x-y = 3$ 
speed of boat  $= \frac{7+3}{2} = 5 \text{ km/h}$ 
speed of current  $= \frac{7-3}{2} = 2 \text{ km/h}$ 

53. (1) 
$$4\cos \operatorname{ec}^{2}\theta + 9\sin^{2}\theta = \frac{4}{\sin^{2}\theta} + 9\sin^{2}\theta$$
$$= \left(\frac{2}{\sin\theta}\right)^{2} + (3\sin\theta)^{2} \qquad \because a^{2} + b^{2} = (a-b)^{2} + 2ab$$

**SSC CHSL : TIER-1** 

$$= \left(\frac{2}{\sin\theta} - 3\sin\theta\right)^2 + 2 \cdot \frac{2}{\sin\theta} \cdot 3\sin\theta$$

$$= \left(\frac{2-3\sin^2\theta}{\sin\theta}\right) + 12$$
For the least value  $\left(\frac{2-3\sin^2\theta}{\sin\theta}\right)$  would be 0 (zero).  
 $\therefore$  The least value = 12  
(3)  
(4)  
(3)  
(3) We may consider that `(1800 - 1650)  
gives interest of `30 at 4% per annum.  
 $\therefore$  Time  $= \frac{30 \times 100}{150 \times 4} = 5$  years  
(4)  $x = y$   
 $\Rightarrow 2t = \frac{2t-1}{3} \Rightarrow 6t = 2t-1 \Rightarrow 4t = -1$   
 $\Rightarrow t = -\frac{1}{4}$   
(1)  
(2) Given  $x = \frac{\sqrt{3}}{2}$   
 $\frac{\sqrt{1+x}}{1+\sqrt{1+x}} \times \frac{1-\sqrt{1+x}}{1-\sqrt{1+x}} + \frac{\sqrt{1-x}}{1-\sqrt{1-x}} \times \frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}$   
 $= \frac{\sqrt{1-x}+1-x}{x} + \frac{\sqrt{1-x}+1-x}{1-1+x}$   
 $= \frac{\sqrt{1-x}+1-x}{x} - \frac{\sqrt{1+x}-1-x}{x}$   
 $= \frac{\sqrt{1-x}+1-x}{x} - \frac{\sqrt{1+x}-1-x}{x}$   
 $= \frac{2+\sqrt{1-x}-\sqrt{1+x}}{x} = \frac{2+\sqrt{1-\frac{\sqrt{3}}{2}}-\sqrt{1+\frac{\sqrt{3}}{2}}}{\frac{\sqrt{3}}{2}}$ 

$$=\frac{4+\sqrt{3}-1-\sqrt{3}-1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$$

2

54

55

56

57.

58.

59

60.

## Grand Test : CHSL-CHT1 : 180228

- 3 61. (2) Let x is the no. of individuals who were covered. Then, Percentage of uncertain individuals = [100 - (20 + 60)]% = 20%ATO.  $\therefore$  60% of x – 20% of x = 720  $\Rightarrow 40\%$  of x = 720  $\Rightarrow \frac{40}{100} \mathbf{x} = 720 \Rightarrow \mathbf{x} = \left(\frac{720 \times 100}{40}\right) = 1800.$ (1) Runs in the first match = 15062. Runs in the second match  $=\frac{150}{5} \times 6 = 180$ Runs in the third match =  $\frac{180}{4} \times 3 = 135$ Required average  $=\frac{150+180+135}{3}=155$ 69. (3 Vivek  $\rightarrow 10$ Shreya  $\rightarrow 12$ Stuti  $\rightarrow 15$ 63. (3) Total work Vivek leaves after 2 days so remaining work = 60 - 12 = 48and last three days stuti work alone : Remaining work ? 60 - 12 + 15 = 63 $\therefore$  Required time  $=\frac{63}{9}=7$  days 70 (3) Total days  $\rightarrow 4 + 3 = 7$ 71. (3)64 (2)= 7065. (3) Side of the first square 72. (3) $=\sqrt{\text{Area}}=\sqrt{200}=10\sqrt{2}$  metre = Its diagonal =  $\sqrt{2} \times \text{side} = 10\sqrt{2} \times \sqrt{2} = 20$  metre : Diagonal of new square 73.  $=\sqrt{2} \times 20 = 20\sqrt{2}$  metre  $\therefore$  Its area =  $\frac{1}{2} \times (\text{diagonal})^2$ =  $=\frac{1}{2} \times 20\sqrt{2} \times 20\sqrt{2}$  m = 400 sq. metre 66. (4) Area of the base  $=\frac{\sqrt{3}}{4} \times (\text{side})^2$  $=\frac{\sqrt{3}}{4}\times 6\times 6=9\sqrt{3}$  sq. cm.  $\therefore$  volume of the prism = Area of the base  $\times$  height  $\Rightarrow 108\sqrt{3} = 9\sqrt{3} \times h$  $\Rightarrow$  h =  $\frac{108\sqrt{3}}{9\sqrt{3}}$  = 12 cm 67 (3)
  - 68. (1) Let the amount (sum) deposited for the two sons are A and B respectively.

Arice,  

$$A\left(1+\frac{4}{100}\right)^{5} = B\left(1+\frac{4}{100}\right)^{7}$$

$$\Rightarrow \frac{A}{B} = \left(1+\frac{4}{100}\right)^{2} = \left(\frac{26}{25}\right)^{2} = \frac{676}{625}$$

$$\therefore (676+625) \text{ units} = 2602$$

$$1 \text{ units} = 2602$$

$$1 \text{ unit} = 2$$
Amount deposited into the account of 1st son
$$= 676 \times 2 = 1352$$

$$ax^{2} + bx + c = a(x - p)^{2}$$

$$ax^{2} + bx + c = a(x^{2} - 2px + p^{2})$$

$$ax^{2} + bx + c = ax^{2} - 2apx + ap^{2}$$
On comparison, we get
$$b^{2} = 4a^{2} p^{2} \text{ and } p^{2} = \frac{c}{a}$$

$$\Rightarrow p^{2} = \frac{b^{2}}{4a^{2}} \Rightarrow \frac{b^{2}}{4a^{2}} = \frac{c}{a}$$

$$\Rightarrow \overline{|b^{2}| = 4ac|}$$

- Required number of students passed in third division
  - Percentage of students failed in 1984

$$\frac{35}{200} \times 100 = 17\frac{1}{2}\%$$

(3) Total passed students = 140 + 150 + 165 = 455Total students = 170 + 195 + 200 = 565: Required percentage

$$\frac{455}{565} \times 100 = \frac{9100}{113} = 80\frac{60}{113}\%$$

- 74. (4) Required percentage  $=\frac{20}{170} \times 100 = \frac{200}{17} = 11\frac{13}{17}\%$
- 75. (4) Required percentage  $=\frac{140}{170} \times 100 = \frac{1400}{17} = 82\frac{6}{17}\%$